

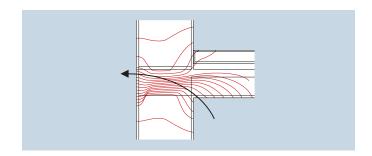
Wärmebrückenoptimierte Systeme rund um das Fenster für KFW-Häuser, Passivhäuser und Plusenergiehäuser

AKTUELLES KNOW-HOW ZAHLT SICH AUS

Wärmebrücken: Zunehmend wichtig für Planung und Bewertung

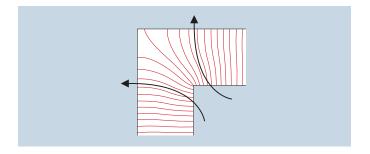
In der wärmeübertragenden Gebäudehülle werden jene Stellen als Wärmebrücken bezeichnet, die im Vergleich zu den angrenzenden Bauteilbereichen einen veränderten Wärmedurchgang aufweisen. Es gelangt vermehrt Wärme von innen nach außen, raumseitig sinkt die Temperatur an Wärmebrücken daher stärker ab als in angrenzenden Bereichen. Wärmebrücken sind örtlich begrenzt und können material-, konstruktiv- oder geometrisch-bedingt vorliegen. Typische Wärmebrücken sind z.B. Fensterstürze, Heizkörpernischen, Rollladenkästen oder Stützen. Im Bereich der Wärmebrücken hat die Innenoberfläche eine wesentlich niedrigere Oberflächentemperatur, als das angrenzende Bauteil. Durch Unterschreitung der Taupunktgrenze, kann dies zu Kondensat und Schimmelbildung führen. Wärmebrücken begründen zudem einen höheren Transmissionswärmeverlust und führen damit zu einem höheren Heizenergiebedarf. Auch der Wohnkomfort leidet: Im Bereich von Wärmebrücken

entstehen niedrige Oberflächentemperaturen an den betroffenen Stellen. Das Raumklima wird als zugig und unbehaglich empfunden. Konsequenz ist eine Erhöhung der Innentemperatur durch höhere Heizwärme. Dadurch entstehen wiederum Mehrkosten.

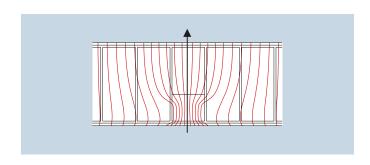

Relevanz der Wärmebrücken wächst

Durch bessere Dämmung lässt sich der Wärmeverlust an flächigen Bauteilen erheblich stärker verringern als an den Anschlussstellen, an denen Wärmebrücken entstehen. Der Anteil der Wärmebrücken am Gesamtwärmeverlust erhöht sich dadurch auch bei verbesserten absoluten Werten. Hiermit wächst der Einfluss von Wärmebrücken auf die Gesamtbilanz im EnEV-Nachweis. Mit steigendem Dämmstandard werden Wärmebrücken zum zunehmend wichtigen Faktor für die Planung und Bewertung von Gebäuden.

Ursachen von Wärmebrücken


Konstruktive Wärmebrücken

Konstruktive Wärmebrücken entstehen aufgrund planerischer oder baulicher Notwendigkeit. Ihre Ursache liegt in der Verbindung von Bauteilen mit unterschiedlicher Wärmeleitfähigkeit, etwa bei auskragenden Balkonen, Rollladenkästen oder beim Auflager einer Geschoßdecke.


Geometrische Wärmebrücken

Als geometrisch bedingte Wärmebrücken werden Stellen bezeichnet, an denen die wärmeaufnehmende Innenoberfläche einer größeren wärmeabgebenden Bauteilaußenfläche gegenübersteht. Typisch hierfür sind Außenecken von Gebäuden.

Materialbedingte Wärmebrücken

Bei stoff- oder materialbedingten Wärmebrücken liegt ein Wechsel der Wärmeleitfähigkeit im Querschnitt eines Bauteils vor. Wie zum Beispiel bei Stahlbetonstützen, Ringanker im Mauerwerk, Betonsturz in einer Klinkerwand.

BERECHNUNG VON WÄRMEBRÜCKEN IM EnEV-NACHWEIS

Berücksichtigung von Wärmebrücken nach unterschiedlichen Verfahren

Die energetische Bewertung zusätzlicher Wärmebrückenverluste der Gebäudehülle ist ein Bestandteil der Energieeinsparverordnung (EnEV) seit dem Jahr 2001. Nach §7 der EnEV heißt es: "Der verbleibende Einfluss der Wärmebrücken bei der Ermittlung des Jahres Primärenergiebedarfs ist nach Maßgabe des jeweils angewendeten Berechnungsverfahrens zu berücksichtigen. Die Berücksichtigung der Wärmebrücken in der EnEV erfolgt in mehreren Arten. Entweder pauschale Zuschläge zu allen Wärmedurchgangskoeffizienten der Hüllfläche oder alternativ durch die Berechnung der individuellen Wärmeverluste der wesentlichen Wärmebrückenanschlüsse."

I. Pauschalierte Berechnung mit vollem Wärmebrückenzuschlag ΔU_{WB} von 0,10 [W/(m^{2*}K)]

Bei der Ermittlung des Jahresheizwärmebedarfs müssen Wärmebrücken mit einem Aufschlag berücksichtigt werden. Ohne Berücksichtigung der DIN 4108 Beiblatt 2 kommt hier das pauschalierte Verfahren mit 0,10 [W/(m²*K)] in Betracht. Im Berechnungsverfahren werden die 0,10 [W/(m²*K)] zu allen U-Werten der Hüllfläche addiert.

2. Pauschalierte Berechnung mit reduziertem Wärmebrückenzuschlag ΔU_{WB} von 0,05 [W/(m^{2*}K)]

Unter Berücksichtigung der Planungsdetails DIN 4108 Beiblatt 2 und mit Nachweis der Gleichwertigkeit wird in diesem Berechnungsverfahren ein ΔU_{WB} von 0,05 [W/(m²*K)] zu allen U-Werten addiert. Um den Nachweis zu erbringen, reichen die Detailausbildungen der DIN 4108 meist nicht aus, denn schon bei geringsten baulichen Abweichungen, müssen die PSI-Werte neu berechnet werden.

3. Detaillierte/Individuelle Berechnung

Hier erfolgt die Berechnung nach DIN EN ISO 10211-2 mit Hilfe der Ψ-Werte der Wärmebrücken. Anders als bei den vorgenannten pauschalierten Verfahren wird dadurch ein wesentliches Verbesserungspotential im EnEV-Nachweis erschlossen. Die detaillierte Wärmebrückenberechnung hat gegenüber dem pauschalen Verfahren wesentliche Vorteile:

- Erhebliche Reduzierung der Transmissionswärmeverluste
- Vermeidung niedriger Oberflächentemperaturen an schwierigen Anschlusssituationen kann nachgewiesen werden
- Durch die detaillierte Wärmebrückenberechnung verringert sich das ΔU_{WB} auf 0,01 [W/(m^{2*}K)] beim Musterhaus

Mit detaillierter Berechnung Vorteile sichern

- Einsparmöglichkeiten realisieren: Durch die detaillierte Berechnung lässt sich im Nachweis ein hoher, geldwerter Spielraum erzielen. Damit können z.B. bei der Anlagentechnik oder bei Wandbaustoffen einfachere und damit kostengünstigere Lösungen zum Zuge kommen.
- Hoher Nutzen, geringer Aufwand: Mit dem vorliegenden Wärmebrückenkatalog bleibt der zusätzliche Planungsaufwand für die individuelle Berechnung gering. Für den Planer und für den
- Bauherrn rechnet sich das individuelle Verfahren doppelt, da sich eingesparte Mittel z.B. für die Optik, Innenausbau oder gestalterische Highlights nutzen lassen.
- Sicherer zum KfW-Effizienzhaus: Für die Inanspruchnahme von Fördergeldern der KfW Bank kann eine detaillierte Berechnung zu höheren Fördergeldern führen, da sich die Energiebilanz schnell um einige Prozent günstiger darstellt.

Service & Beratung Beck+Heun

Sie planen eine wärmebrückenfreie Gebäudehülle? Mit unseren Rollladen- und Raffstorekästen erfüllen Sie schon jetzt die Ansprüche an energieeffizientes Bauen der Zukunft. Nehmen Sie mit uns Kontakt auf – wir stehen Ihnen bei Fragen zu Wärmebrücken rund um das Fenster gerne zur Verfügung und unterstützen Sie bei den planungsbegleitenden Berechnungen Ihres Bauvorhabens. Selbstverständlich ist dieser Service für Sie kostenlos und unverbindlich und erfolgt auf der Basis der neuesten Bestimmungen.

Wir rufen Sie gerne zurück!

Kontakt: bauphysik@beck-heun.de | Telefon: +49 (0) 3 61 / 7 40 36-0

BEISPIELRECHNUNG MUSTERHAUS

Gebäudegeometrie	
Nutzfläche	232 m²
Gebäudevolumen	724 m³
Fensterfläche	43,2 m ²
Hüllfläche	544 m²
Bauteile	U-Wert
Außenwand	0,23 [W/(m ² *K)]
Außenwand Kellerwand	0,23 [W/(m ² *K)] 0,27 [W/(m ² *K)]
	, ,
Kellerwand	0,27 [W/(m²*K)]
Kellerwand KG Trennwand	0,27 [W/(m ² *K)] 0,25 [W/(m ² *K)]

Berechnung				
	EnEV	KfW70	KfW 55	mit Einsatz einer Solaranlage
pauschaler Wärmebrückenzuschlag 0,05 [W/(m²*K)] mit Anlage 28 gemäß DINV 4701-10 Bbl.1	/	×	X	Nein
pauschaler Wärmebrückenzuschlag 0,05 [W/(m²*K)] mit Anlage 37 gemäß DINV 4701-10 Bbl.1	/	/	×	Ja
detaillierte Wärmebrückenberechnung mit Anlage 28 gemäß DINV 4701-10 Bbl.1	/	/	×	Nein
detaillierte Wärmebrückenberechnung mit Anlage 37 gemäß DINV 4701-10 Bbl.1	/	/	/	Ja

Spez. Transmissionswärmeverlust	$[W/(m^2*K)]$
Mindestanforderung KfW 55	0,261
Mindestanforderung KfW 70	0,317
Mindestanforderung EnEV	0,37
Detaillierte Berechnung	0,26
Pauschaler Zuschlag	0,315

Jahres-Primärenergiebedarf	$[W/(m^2*K)]$
Mindestanforderung KfW 55	42,7
Mindestanforderung KfW 70	54,04
Mindestanforderung EnEV	77,7
Detaillierte Berechnung mit Anlage 28	53,9
Detaillierte Berechnung mit Anlage 37	40,7
Pauschaler Zuschlag mit Anlage 28	62,5
Pauschaler Zuschlag mit Anlage 37	51,2

Fazit

Neben der pauschalen Erfassung besteht immer auch die Möglichkeit, die Wärmebrückenverluste detailliert zu berechnen. Ehrgeizige Ziele wie z.B. KfW 55 oder KfW 40 können mit der pauschalen Wärmebrückenberechnung nur durch den Einsatz teurer Haustechnik erreicht werden. Durch die detaillierte Berechnung der Wärmebrücken und die Verwendung der Wärmebrückenoptimierten Beck+Heun-Produkte, wurden beim Musterhausprojekt der Energiestandard KfW 70 ohne Einsatz von Solarspeicher und KfW 55 mit zusätzlichen solaren Speicher erreicht, wobei die pauschale Berechnung mit Einsatz des solaren Speichers lediglich die Anforderungen am KfW 70 erfüllen konnte.

Energieeinsparnachweis nach EnEV 2009 nach dem Monatsbilanzverfahren der DIN 4108-6 und Berechnung der Anlagentechnik nach DIN 4701-10. Die Berechnungen erfolgten mit Therm 6.3.46 und BKI 14.

UNSERE PRODUKTEMPFEHLUNGEN AUF EINEN BLICK

S. 08 | Deckenrandschalung DRS6

- Ziegel-Dämmschalung mit NEOPOR®-Dämmung
- Elementhöhe: 200 mm / Elementbreite: I 20 mm
- Ψ-Wert [W/(m*K)]:
 Beiblatt 2 DIN 4108: Ψ 0,06
 Beck+Heun: Ψ 0,06

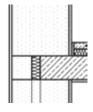


Bild 71

S. 10 | ROKA-LITH NEOLINE RR 165

- Vollziegelkasten mit thermischer Trennung und NEOPOR®-Dämmung
- Rollraum D = 16,5 cm für Fenster
- Ψ-Wert [W/(m*K)]:
 Beiblatt 2 DIN 4108: Ψ 0,32
 Beck+Heun: Ψ 0,07

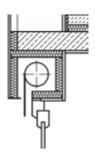


Bild 60

S. 12 | ROKA-LITH NEOLINE RR 210

- Vollziegelkasten mit thermischer Trennung und NEOPOR®-Dämmung
- Rollraum D = 21,0 cm für Türen
- Ψ-Wert [W/(m*K)]:
 Beiblatt 2 DIN 4108: Ψ 0,32
 Beck+Heun: Ψ 0,13

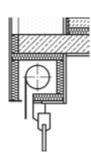


Bild 60

S. 14 | ROKA-LITH SHADOW NEOLINE

- Vollziegelkasten mit thermischer Trennung und NEOPOR®-Dämmung
- Ψ-Wert [W/(m*K)]:
 Beiblatt 2 DIN 4108: Ψ 0,32
 Beck+Heun: Ψ 0,14

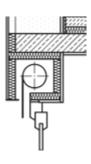
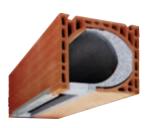



Bild 60

S. 16 | ROKA-LITH RG CLASSIC

- Vollziegelrollladenkasten mit innenliegender NEOPOR®-Dämmung
- Ψ-Wert [W/(m*K)]:
 Beiblatt 2 DIN 4108: Ψ 0,32
 Beck+Heun: Ψ 0,20

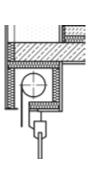


Bild 60

S. 18 | ROKA-LITH KOMBI

- Vollziegelkasten als Rollladen- oder Raffstorekasten verwendbar
- Ψ-Wert [W/(m*K)]:
 Beiblatt 2 DIN 4108: Ψ 0,32
 Beck+Heun: Ψ 0,24

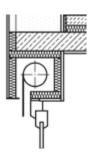


Bild 60

S. 20 | ROKA-LITH SHADOW

- Vollziegelkasten mit integrierter NEOPOR®-Dämmung
- Für 80er Lamellen, Pakethöhe 270 mm
- Ψ-Wert [W/(m*K)]:
 Beiblatt 2 DIN 4108: Ψ 0,32
 Beck+Heun: Ψ 0,18

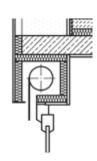
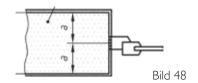
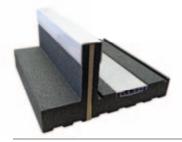



Bild 60


S. 22 | Beck+Heun Laibungsziegel

- Fensterbefestigung in 30 mm
 Phonotherm-Funktionswerkstoff
- mit 45 mm Fensteranschlag
- Ψ-Wert [W/(m*K)]:
 Beiblatt 2 DIN 4108: Ψ 0,05
 Beck+Heun: Ψ -0,01

S. 24 | Fensterbankanschlussprofil FBA

- Fensterbank-Anschlusselement aus NEOPOR®
- Ψ-Wert [W/(m*K)]:
 Beiblatt 2 DIN 4108: Ψ 0,07
 Beck+Heun: Ψ 0,04

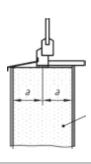
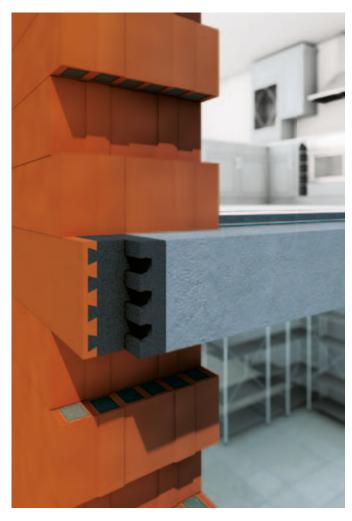
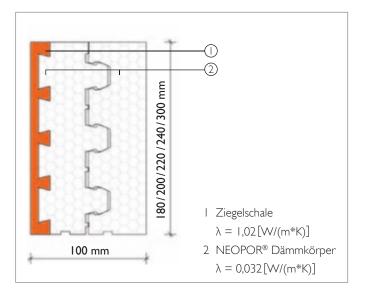


Bild 42

S. 26 | ROKA-CO₂MPACT®

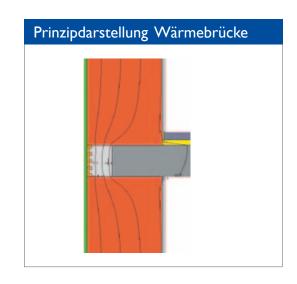

- Alles in einem System
- Einfach montiert und perfekt gedämmt
- Auf Wunsch mit integrierter dezentraler Lüftung System AIRFOX®

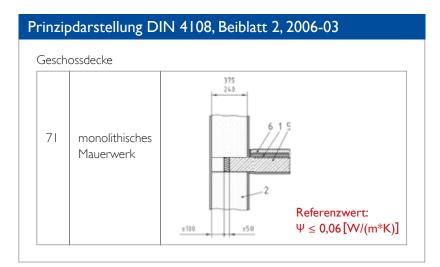
DECKENRANDSCHALUNG DRS6

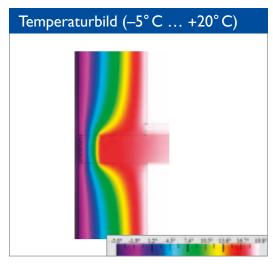

Nur unser High-Tech-Produkt erfüllt nach derzeitigem Stand sicher den Nachweis $\Psi \leq 0.06$ [W/(m*K)]

- Referenzwert für Ψ für den Nachweis der Gleichwertigkeit nach DIN 4108-Beiblatt 2:2006-03 (Bild 71)
- Ausführung nach den Empfehlungen des Eurocode 6
- Optimierte Schalldämmung

Produktdetail


Ausschreibungstext Deckenrandschalung DRS6


Beck+Heun Ziegel-Dämmschalung für die sichere Ausführung nach Beiblatt 2 zur DIN 4108 $\Psi \leq 0.06 \, [\text{W/(m*K)}]$ und nach Eurocode 6. Dämmung aus NEOPOR® WLG 032 mit integriertem Schwingungsdämpfer. Oberfläche aus strukturiertem Ziegel als homogener Putzuntergrund. Deckenrandschalung mit optimierter Schalldämmung durch 2/3 Auflagertiefe. Lieferung mit Kippsicherung (Kunststoffschraube zum Einbinden in die Deckenbewehrung, lose im Beipack). Elementlänge 100,0 cm mit Stufenfalz für die fugenlose Elementverbindung.


Elementstärke 10,0 cm für die Wandstärke 30,0 cm Elementstärke 12,0 cm für die Wandstärke 36,5 cm Elementstärke 14,0 cm für die Wandstärke 42,5 cm Elementstärke 16,0 cm für die Wandstärke 49,0 cm

Wärmebrückenkatalog Beck+Heun Deckenrandschalung DRS6			
Detail	Einbausituation	Produktbezeichnung	
Geschoßdecke, Deckenrand mit Dämmschalung	Außenwand monolithisch, Stahlbetondecke	Deckenrandschalung DRS6	

Legende Materialien		
Materialbezeichnung	λ : [W/(m*K)]	Schichtdicke mm
Kalkgipsputz	0,7	15
Ziegelmauerwerk	0,07 0,14	300490
Kalkzementleichtputz	0,38	20
FB-Dämmung WLG 040	0,04	30
Zementestrich	1,4	45
Stahlbeton bewehrt (1%)	2,3	180
Ziegelschale	1,02	~15
Dämmung NEOPOR® WLG 032	0,032	~105

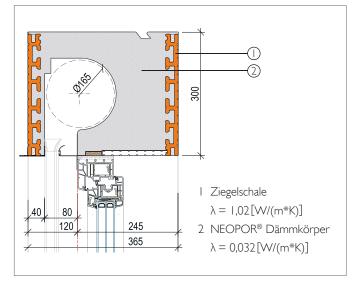
Gleichwertigkeit:

 $\Psi_{\text{e,max}}$: 0,06 [W/(m*K)] \leq 0,06 [W/(m*K)] (Referenzwert It. Bild 71, Bbl. 2 DIN 4108): Gleichwertigkeit ist erfüllt

Längenbezogener Wärmedurchgangskoeffzient Ψ : [W/(m*K)]

		Wandstärke/Elementstärke			
it	λ	30,0/10,0 cm	36,5/12,0 cm	42,5/14,0 cm	49,0/16,0 cm
higke]	0,07	0,06	0,06	0,06	0,06
Wärmeleitfähigkeit λ: [W/(m*K)]	0,09	0,06	0,06	0,06	0,06
rme W/(0,11	0,06	0,06	0,06	0,06
, γ. [γ. [0,14	0,06	0,06	0,06	0,06

ROKA-LITH NEOLINE RR 165


Die optimale Ergänzung zur neuen Ziegelsteingeneration

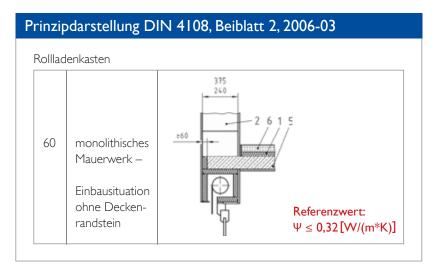
- Vollziegelkasten mit thermischer Trennung und NEOPOR®-Dämmung
- Für höchste Ansprüche an Wärmeschutz, für KFWund Passivhäuser
- Rollraum Ø = 16,5 cm für Fenster

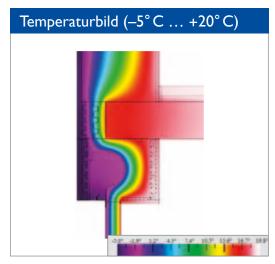
Produktdetail

Ausschreibungstext ROKA-LITH NEOLINE

Beck+Heun Ziegelrolladenkasten, ROKA-LITH NEOLINE, thermisch getrennt, raumseitig geschlossen, statisch selbsttragend (unterstützungsfrei bis 151,0 cm), mit innenliegender Wärmedämmung aus NEOPOR® und wärmegedämmten Seitenteilen.


Für die Wandstärken 38,0 / 42,5 / 49,0 cm kommen ergänzende stranggepresste Ziegelformteile zum Einsatz.


Die Hohlkammern dieser Ziegelformteile können wahlweise mit Perlite / Mineralwolle / NEOPOR® gefüllt werden. Verfülltaschen zur Betonaufnahme, Rollladenkasten-Abschlussschienen mit 2,0 cm Überstand außen im lichten Fensterbereich, mit Bügelschrauben und Muttern zur Aufnahme des Lagerhalters. Komplett mit Lagerhalter, Kugellager, Gurtscheibe und Teleskopwelle vormontiert. Mit Blendrahmen-Anschlussprofil zur Fensterfixierung.


Ausführung für Fenster mit Rollraum Ø 16,5 cm.

Wärmebrückenkatalog Beck+Heun ROKA-LITH NEOLINE RR 165 mm			
Detail	Einbausituation	Produktbezeichnung	
Rollladenkasten, Geschoßdecke, Deckenrand mit Dämmschalung	Außenwand monolithisch, Stahlbetondecke	ROKA-LITH NEOLINE RR 165, Dämmschalung DRS6	

Legende Materialien		
Materialbezeichnung	λ : [W/(m*K)]	Schichtdicke mm
Kalkgipsputz	0,7	15
Ziegelmauerwerk	0,07 0,14	300 490
Kalkzementleichtputz	0,38	20
FB-Dämmung WLG 040	0,04	30
Zementestrich	1,4	45
Stahlbeton bewehrt (1%)	2,3	180
Ziegelschale	1,02	~15
Dämmung NEOPOR® WLG 032	0,032	~105
Perlite	0,05	var.

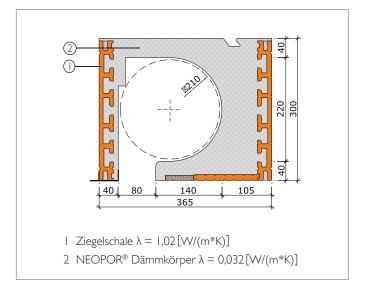
Gleichwertigkeit:

 $\Psi_{\text{e,max}}$: 0,13 [W/(m*K)] \leq 0,32 [W/(m*K)] (Referenzwert It. Bild 60, Bbl. 2 DIN 4108): Gleichwertigkeit ist erfüllt

Längenbezogener Wärmedurchgangskoeffzient Ψ : [W/(m*K)]

		Wandstärke			
it	λ	30,0 cm	36,5 cm	42,5 cm	49,0 cm
higke]	0,07	0,127	0,102	0,100	0,132
leitfä m*K	0,09	0,103	0,083	0,084	0,119
Wärmeleitfähigkeit λ: [W/(m*K)]	0,11	0,080	0,065	0,068	0,106
× α	0,14	0,046	0,037	0,045	0,087

ROKA-LITH NEOLINE RR 210


Die optimale Ergänzung zur neuen Ziegelsteingeneration

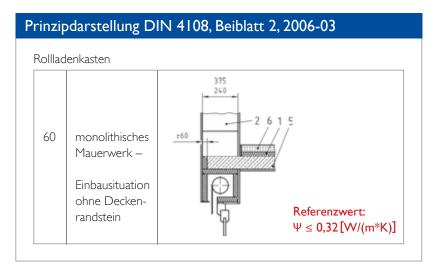
- Vollziegelkasten mit thermischer Trennung und NEOPOR®-Dämmung
- Für höchste Ansprüche an Wärmeschutz, für KFWund Passivhäuser
- Rollraum Ø = 21,0cm für Türen

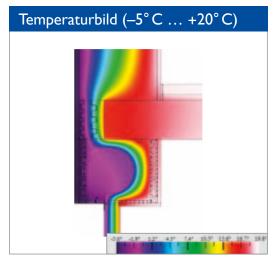
Produktdetail

Ausschreibungstext ROKA-LITH NEOLINE

Beck+Heun Ziegelrolladenkasten, ROKA-LITH NEOLINE, thermisch getrennt, raumseitig geschlossen, statisch selbsttragend (unterstützungsfrei bis 151,0 cm), mit innenliegender Wärmedämmung aus NEOPOR® und wärmegedämmten Seitenteilen.

Für die Wandstärken 38,0 / 42,5 / 49,0 cm kommen ergänzende stranggepresste Ziegelformteile zum Einsatz.


Die Hohlkammern dieser Ziegelformteilen können wahlweise mit Perlite / Mineralwolle / NEOPOR® gefüllt werden. Verfülltaschen zur Betonaufnahme, Rollladenkasten-Abschlussschienen mit 2,0 cm Überstand außen im lichten Fensterbereich, mit Bügelschrauben und Muttern zur Aufnahme des Lagerhalters. Komplett mit Lagerhalter, Kugellager, Gurtscheibe und Teleskopwelle vormontiert. Mit Blendrahmen-Anschlussprofil zur Fensterfixierung.


Ausführung für Türen mit Rollraum Ø 21,0 cm.

Wärmebrückenkatalog Beck+Heun ROKA-LITH NEOLINE RR 210 mm			
Detail	Einbausituation	Produktbezeichnung	
Rollladenkasten, Geschoßdecke, Deckenrand mit Dämmschalung	Außenwand monolithisch, Stahlbetondecke	ROKA-LITH NEOLINE RR 210, Dämmschalung DRS6	

Legende Materialien		
Materialbezeichnung	λ : [W/(m*K)]	Schichtdicke mm
Kalkgipsputz	0,7	15
Ziegelmauerwerk	0,07 0,14	300 490
Kalkzementleichtputz	0,38	20
FB-Dämmung WLG 040	0,04	30
Zementestrich	1,4	45
Stahlbeton bewehrt (1%)	2,3	180
Ziegelschale	1,02	~15
Dämmung NEOPOR® WLG 032	0,032	~105

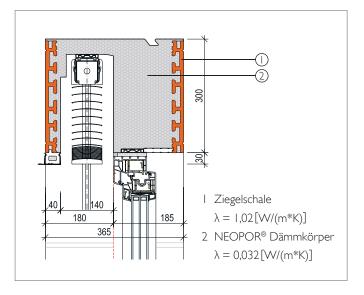
Gleichwertigkeit:

 $\Psi_{\text{e,max}}$: 0,23 [W/(m*K)] \leq 0,32 [W/(m*K)] (Referenzwert It. Bild 60, Bbl. 2 DIN 4108): Gleichwertigkeit ist erfüllt

Längenbezogener Wärmedurchgangskoeffzient Ψ : [W/(m*K)]

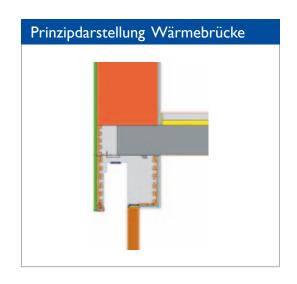
		Wandstärke			
it	λ	30,0 cm	36,5 cm	42,5 cm	49,0 cm
Wärmeleitfähigkeit λ: [W/(m*K)]	0,07	0,227	0,162	0,154	0,152
eitfäl n*K)	0,09	0,203	0,142	0,138	0,132
rme W/(0,11	0,179	0,123	0,122	0,126
× γ . [0,14	0,145	0,093	0,098	0,106

ROKA-LITH SHADOW NEOLINE

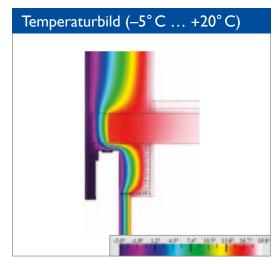

Der Raffstorekasten für höchste Ansprüche

- Vollziegelkasten mit thermischer Trennung und NEOPOR®-Dämmung
- Für höchste Ansprüche an Wärmeschutz, für KFW- und Passivhäuser
- Um 3,0 cm nach unten verlängerter Außenschenkel zur Abdeckung der Baukörper-Anschlussfuge

Produktdetail


Ausschreibungstext ROKA-LITH SHADOW NEOLINE

Beck+Heun Ziegelraffstorekasten System ROKA-LITH SHADOW NEOLINE, thermisch getrennt, statisch selbsttragend (unterstützungsfrei bis 151,0 cm), mit höchsten Anforderungen an Wärmedämmung und Fugendichtheit. Wärmedämmung aus NEOPOR®-Hartschaum WLG 032-B1 (schwer entflammbar), Verfülltaschen zur Betonaufnahme, Rollladenkasten-Abschlußschiene-Alu-blank, außen 2,0 cm Überstand im lichten Bereich. Mit NEOPOR®-gedämmten (WLG 032) Seitenteilen und Auflagerbereichen (Auflage 6,0 cm je Seite bei elektr. Antrieb, 12,0 cm auf der Antriebseite bei Kurbelbedienung), integriertes Blendrahmenanschlußprofil zum Fixieren des Fensterelementes, Schachtbreite 14,0 cm für 8,0 cm Lamelle, für Pakethöhe bis 28,0 cm, mit 3,0 cm nach unten verlängerter Außenblende zur Abdeckung der Fensteranschlußfuge, Kastenhöhe im Auflagebereich 33,0 cm, mit einer Spezialbeschichtung (grau) gegen Ungeziefer und Witterungseinflüsse beschichtet.


Für die Wandstärken ab 38,0 cm werden ergänzend stranggepresste Ziegelformteile aufgeklebt. Die Hohlkammern dieser Ziegelformteile können wahlweise mit Perlite, Mineralwolle oder NEOPOR® gefüllt werden. Die Aufdoppelung erfolgt auf der Innenseite.

Wärmebrückenkatalog Beck+Heun ROKA-LITH SHADOW NEOLINE				
Detail	Einbausituation	Produktbezeichnung		
Raffstorekasten, Geschoßdecke, Deckenrand mit Dämmschalung	Außenwand monolithisch, Stahlbetondecke	ROKA-LITH SHADOW NEOLINE, Dämmschalung DRS6		

Legende Materialien			
Materialbezeichnung	λ : [W/(m*K)]	Schichtdicke mm	
Kalkgipsputz	0,7	15	
Ziegelmauerwerk	0,07 0,14	300 490	
Kalkzementleichtputz	0,38	20	
FB-Dämmung WLG 040	0,04	30	
Zementestrich	1,4	45	
Stahlbeton bewehrt (1%)	2,3	180	
Ziegelschale	1,02	~15	
Dämmung NEOPOR® WLG 032	0,032	~105	

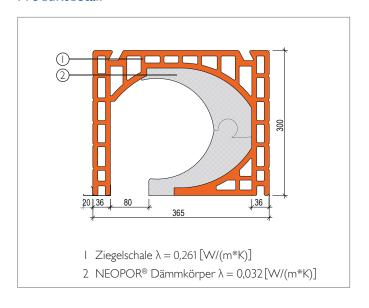
Gleichwertigkeit:

$$\begin{split} &\Psi_{\text{e,max}} : \text{ 0,15 [W/(m*K)]} \leq \text{ 0,32 [W/(m*K)]} \\ &(\text{Referenzwert It. Bild 60, Bbl. 2 DIN 4108}): \\ &\text{Gleichwertigkeit ist erfüllt} \end{split}$$

Längenbezogener Wärmedurchgangskoeffzient Ψ : [W/(m*K)]

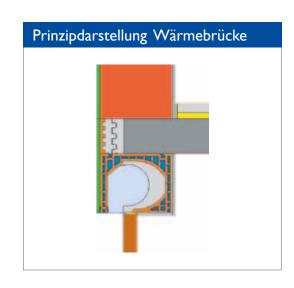
		Wandstärke			
it	λ	30,0 cm	36,5 cm	42,5 cm	49,0 cm
Wärmeleitfähigkeit λ: [W/(m*K)]	0,07	0,151	0,127	0,121	0,120
eitfäl n*K)	0,09	0,127	0,107	0,104	0,106
rme W/(0,11	0,103	0,088	0,087	0,093
, γ. [. [0,14	0,068	0,060	0,063	0,072

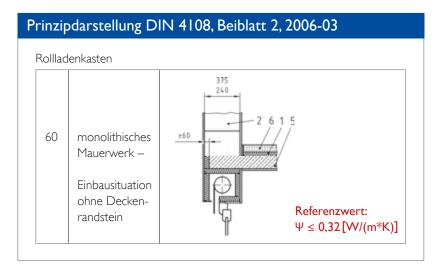
BECK+HEUN ROKA-LITH RG CLASSIC

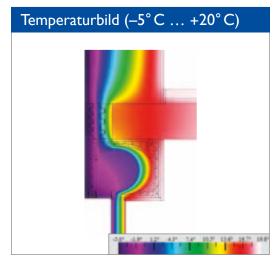

Das Basismodell, auf Wunsch auch mit Perlite-Füllung

- Vollziegelrollladenkasten zur optimierten Fensterfixierung
- PSI-Werte laut Beiblatt 2 zur DIN 4108 bzw. je nach Ausführung bis zu 50% besser
- Raumseitig geschlossen für beste Schallschutzwerte

Produktdetail



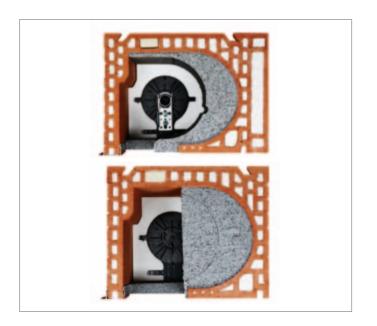

Ausschreibungstext ROKA-LITH RG CLASSIC


Beck+Heun Ziegelrollladenkasten aus 25,0 cm langen, plangeschliffenen Teistücken gefertigt, System ROKA-LITH RG CLASSIC, raumseitig geschlossen, statisch selbsttragend mit innenliegendem Wärmedämmkeil aus NEOPOR®, Kunststoff-Seiten-teile mit Polystyrol-Inlay (Wärmedurchlasswiderstand = R > 0,55 m² K/W) und Schallentkoppelung zum Mauerwerk. Verfülltaschen zur Betonaufnahme, Rollladenkasten-Abschlussschienen mit 2,0 cm Überstand außen im lichten Fensterbereich mit Bügelschrauben und Muttern zur Aufnahme des Lagerhalters. Komplett mit Lagerhalter; Kugellager; Gurtscheibe und Teleskopwelle vormontiert.

Wärmebrückenkatalog Beck+Heun ROKA-LITH RG CLASSIC				
Detail	Einbausituation	Produktbezeichnung		
Rollladenkasten, Geschoßdecke, Deckenrand mit Dämmschalung	Außenwand monolithisch, Stahlbetondecke	ROKA-LITH RG CLASSIC, Dämmschalung DRS6		

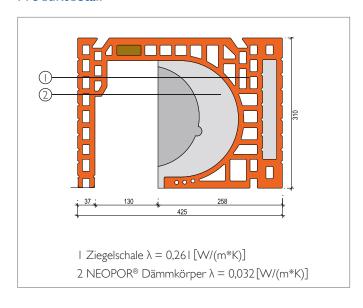
Legende Materialien				
Materialbezeichnung	λ : [W/(m*K)]	Schichtdicke mm		
Kalkgipsputz	0,7	15		
Ziegelmauerwerk	0,07 0,14	300 490		
Kalkzementleichtputz	0,38	20		
FB-Dämmung WLG 040	0,04	30		
Zementestrich	1,4	45		
Stahlbeton bewehrt (1%)	2,3	180		
Ziegelschale porosiert	0,261	~15		
Dämmung NEOPOR® WLG 032	0,032	~105		
Hohlraum unbelüftet	0,080,19	15 26		

Gleichwertigkeit:


 $\Psi_{\text{e,max}}$: 0,27 [W/(m*K)] \leq 0,32 [W/(m*K)] (Referenzwert It. Bild 60, Bbl. 2 DIN 4108): Gleichwertigkeit ist erfüllt Längenbezogener Wärmedurchgangskoeffzient Ψ : [W/(m*K)]

		Wandstärke		
ji.	λ	30,0 cm	36,5 cm	42,5 cm
Värmeleitfähigkeit : [W/(m*K)]	0,07	0,265	0,240	0,266
eitfäl n*K)	0,09	0,238	0,219	0,208
rme W/(0,11	0,213	0,199	0,191
× × × × × × × × × × × × × × × × × × ×	0,14	0,178	0,170	0,166

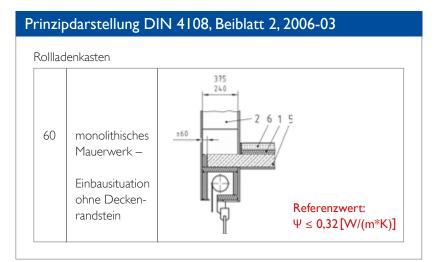
ROKA-LITH RG KOMBI

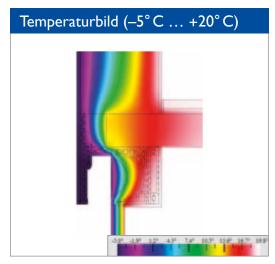

Der Universelle – wahlweise für Rollladen- oder Raffstorebehang

- Vollziegelkasten, als Rollladen- oder Raffstorekasten verwendbar
- PSI-Werte laut Beiblatt 2 zur DIN 4108 bzw. je nach Ausführung bis zu 50% besser
- Mit innenliegender NEOPOR®-Dämmung

Produktdetail


Ausschreibungstext ROKA-LITH RG KOMBI


Beck+Heun Ziegelrollladenkasten aus 25,0 cm langen, plangeschliffenen Teilstücken gefertigt, System ROKA-LITH RG KOMBI, raumseitig geschlossen, statisch selbsttragend mit innenliegendem Wärmedämmkeil aus NEOPOR®, wärmegedämmte Seitenteile und Schallentkoppelung zum Mauerwerk. Verfülltaschen zur Betonaufnahme, Rollladenkasten-Abschlussschienen mit 2,0 cm Überstand außen im lichten Fensterbereich, mit Bügelschrauben und Muttern zur Aufnahme des Lagerhalters. Komplett mit Lagerhalter; Kugellager, Gurtscheibe und Teleskopwelle vormontiert.


Umrüstung mit Zusatzdämmkeil aus NEOPOR® zum Raffstore-Kasten möglich. Vorgefertigt für 8,0 cm Lamelle (Schachtgröße 13,0 cm) und für Pakethöhen bis 26,0 cm.

Wärmebrückenkatalog Beck+Heun ROKA-LITH RG KOMBI			
Detail	Einbausituation	Produktbezeichnung	
Rollladenkasten, Geschoßdecke, Deckenrand mit Dämmschalung	Außenwand monolithisch, Stahlbetondecke	ROKA-LITH RG KOMBI (Raffstorevariante), Dämmschalung DRS6	

Legende Materialien				
Materialbezeichnung	λ : [W/(m*K)]	Schichtdicke mm		
Kalkgipsputz	0,7	15		
Ziegelmauerwerk	0,07 0,14	300 490		
Kalkzementleichtputz	0,38	20		
FB-Dämmung WLG 040	0,04	30		
Zementestrich	1,4	45		
Stahlbeton bewehrt (1%)	2,3	180		
Ziegelschale porosiert	0,261	~15		
Dämmung NEOPOR® WLG 032	0,032	~105		
Hohlraum unbelüftet	0,080,19	1526		

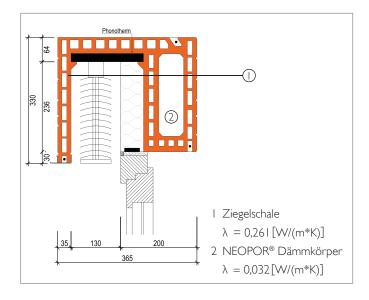
Gleichwertigkeit:

$$\begin{split} \Psi_{\text{e,max}} : & \textbf{0,26 [W/(m*K)]} \leq \textbf{0,32 [W/(m*K)]} \\ \text{(Referenzwert It. Bild 60, Bbl. 2 DIN 4108):} \\ \text{Gleichwertigkeit ist erfüllt} \end{split}$$

Längenbezogener Wärmedurchgangskoeffzient Ψ : [W/(m*K)]

		Wandstärke		
Wärmeleitfähigkeit λ: [W/(m*K)]	λ	42,5 cm	49,0 cm	
	0,07	0,255	0,225	
	0,09	0,236	0,209	
	0,11	0,218	0,193	
Wä γ:[0,14	0,191	0,170	

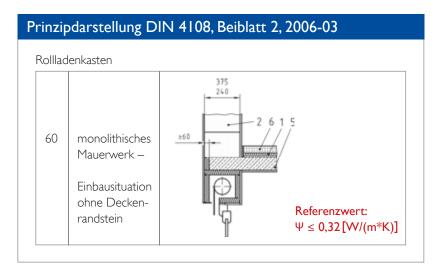
BECK+HEUN ROKA-LITH SHADOW

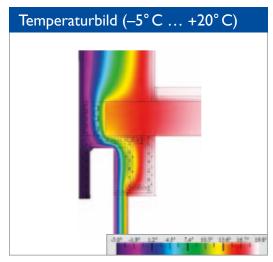

Für die moderne Raffstorebeschattung

- Vollziegelkasten mit integrierter NEOPOR®-Dämmung
- Um 3,0 cm nach unten verlängerter Außenschenkel zur Abdeckung der Baukörper-Anschlussfuge
- Für 80er Lamellen, Pakethöhe 27,0 cm

Produktdetail

Ausschreibungstext ROKA-LITH SHADOW


Beck+Heun Ziegelrollraffstorekasten-System aus 25,0 cm langen, plangeschliffenen Teistücken gefertigt, System ROKA-LITH SHADOW, statisch selbsttragend mit innenliegendem Wärmedämmkeil aus NEOPOR®. Verfülltaschen zur Betonaufnahme, Rollladenkasten-Abschlussschienen mit 2,0 cm Überstand außen im lichten Fensterbereich.


Für Pakethöhen bis 27,0cm und um 3,0cm nach unten verlängerter Aussenblende zum Verdecken der Baukörperanschlussfuge. Die Lieferung erfolgt mit Aufhängebügel zur Befestigung in der Decke.

Wärmebrückenkatalog Beck+Heun ROKA-LITH SHADOW			
Detail	Einbausituation	Produktbezeichnung	
Raffstorekasten, Geschoßdecke, Deckenrand mit Dämmschalung	Außenwand monolithisch, Stahlbetondecke	ROKA-LITH SHADOW, Dämmschalung DRS6	

Legende Materialien				
Materialbezeichnung	λ : [W/(m*K)]	Schichtdicke mm		
Kalkgipsputz	0,7	15		
Ziegelmauerwerk	0,07 0,14	300 490		
Kalkzementleichtputz	0,38	20		
FB-Dämmung WLG 040	0,04	30		
Zementestrich	1,4	45		
Stahlbeton bewehrt (1%)	2,3	180		
Ziegelschale porosiert	0,261	~15		
Dämmung NEOPOR® WLG 032	0,032	~105		
Hohlraum unbelüftet	0,080,19	1526		

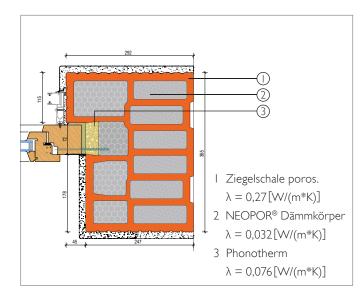
Gleichwertigkeit:

$$\begin{split} &\Psi_{\text{e,max}} : \text{ 0,21 [W/(m*K)]} \leq \text{ 0,32 [W/(m*K)]} \\ &(\text{Referenzwert It. Bild 60, Bbl. 2 DIN 4108}): \\ &\text{Gleichwertigkeit ist erfüllt} \end{split}$$

Längenbezogener Wärmedurchgangskoeffzient Ψ : [W/(m*K)]

		Wandstärke			
Wärmeleitfähigkeit λ: [W/(m*K)]	λ	36,5 cm	42,5 cm		
	0,07	0,212	0,210		
	0,09	0,192	0,193		
	0,11	0,171	0,176		
	0,14	0,142	0,150		

BECK+HEUN Laibungsziegel

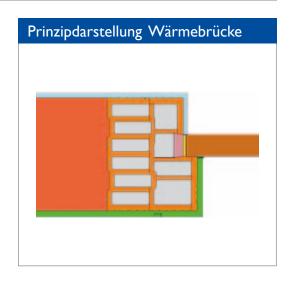

Unsere Lösung zur sicheren Fensterbefestigung im Ziegelmauerwerk

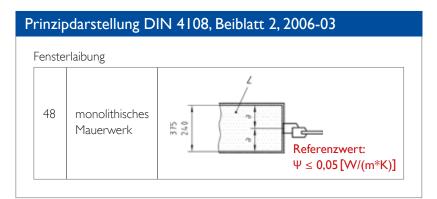
- "Wärmebrückenfreie" Laibung durch Beck+Heun Laibungsziegel mit MINUS-PSI-Werten Ψ
- Sichere und einfache Fensterbefestigung in 3,0 cm Phonotherm-Funktionswerkstoff
- Alle Voraussetzungen für RAL-Montage sind gegeben

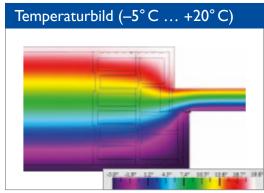
Produktdetail

Ausschreibungstext Laibungsziegel

System-Ergänzung zur gefüllten Ziegelgeneration: Beck+Heun Laibungsziegel als ausführungssicheres Fensteranschluss-Detail, mit thermischer Trennung und optimierter Fensterbefestigung mittels Standard-Schrauben in Funktionswerkstoff Phonotherm.


Hohlkammern verfüllt mit NEOPOR® für hochwärmedämmendes Ziegelmauerwerk.


Erhältlich als Halbstein und ganzen Stein.


Neu: Auf Wunsch auch als Ausführung "ohne Fensteranschlag".

Wärmebrückenkatalog Beck+Heun Laibungsziegel				
Detail	Einbausituation	Produktbezeichnung		
Fensterlaibung	Außenwand monolithisch	Beck+Heun Laibungsziegel		

Legende Materialien					
Materialbezeichnung	λ : [W/(m*K)]	Schichtdicke mm			
Kalkgipsputz	0,7	15			
Ziegelmauerwerk	0,07 0,14	300 490			
Kalkzementleichtputz	0,38	20			
Ziegelschale porosiert	0,27	bis 19			
Dämmung NEOPOR® WLG 032	0,032	bis 83			
Dämmung WLG 035	0,035	bis 42			
Einbaufuge	0,04	10			
Phonotherm	0,076	30			
Fenster (Platzhalter)	0,13	70			

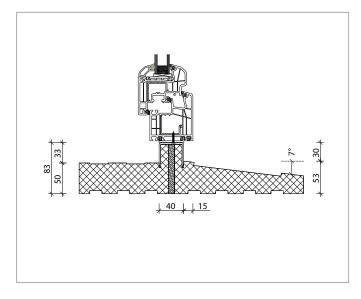
Ergebnisse, in Abhängigkeit von Mauerwerksstärke und Lamda-Wert des Mauerwerks. Gleichwertigkeit: $\Psi_{e,max}$: 0,005 [W/(m*K)] \leq 0,05 [W/(m*K)]

(Referenzwert lt. Bild 48, Bbl. 2 DIN 4108): Gleichwertigkeit ist erfüllt

Längenbezogener Wärmedurchgangskoeffzient Ψ : [W/(m*K)]

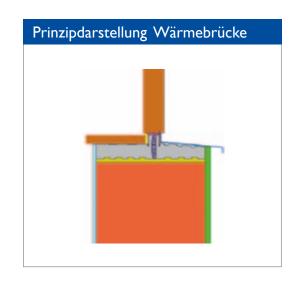
	λ	Wandstärke (Rollladenkasten)						Wandstärke (Raffstorekasten)	
ت		36,5 cm 1/2 St.	36,5 cm 1/1 St.	36,5 cm Gurtw.	42,5 cm 1/2 St.	42,5 cm I/I St.	42,5 cm Gurtw.	36,5 cm 1/2 St.	36,5 cm 1/1 St.
Värmeleitfähigkeit : [W/(m*K)]	0,07	0	-0,001	-0,001	0,005	0,005	-0,003	-0,003	-0,001
	0,09	-0,005	-0,013	-0,011	-0,007	-0,005	-0,008	-0,008	-0,013
	0,11	-0,01	-0,025	-0,022	-0,018	-0,015	-0,013	-0,013	-0,024
Wäi λ: [0,14	-0,018	-0,042	-0,039	-0,032	-0,030	-0,021	-0,021	-0,042

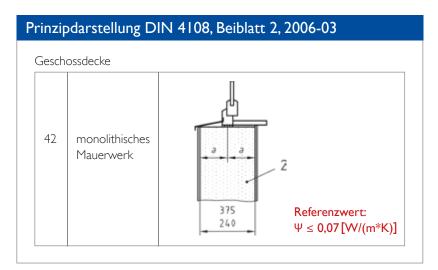
FENSTERBANKANSCHLUSSPROFIL FBA

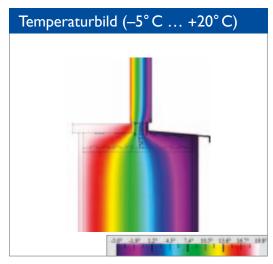

Universelle und wärmegedämmte Fenterbank- und Estrichanschluss-Elemente

- Planungs- und Montagefreundlichkeit
- Entspricht den erhöhten Wärmeschutzanforderungen
- Geprüfte Schlagregendichtheit

Produktdetail


Ausschreibungstext Fensterbankanschlussprofil FBA


Fenstermontage mit THERMO-FBA Fensterbankanschlusselement aus Polystyrol-Hartschaum EPS 250-035-B1 (Lambda 0,035) oder NEOPOR® 250-035-B1 (Lambda 0,032), vorgerichtet für eine Aluminium- oder Steinfensterbank außen sowie eine unter dem Fensterblendrahmen einzusetzende innere Fensterbank


- Verklebung des im Lieferumfang enthaltenen L-Profils mit dem Fensterprofil
- Abdichtung des L-Profils zum Blendrahmen unten und seitlich 4,0 cm
- Verklebung des L-Profils mit dem U-Profil
- mechanische Befestigung des Blendrahmens (RAL-Richtlinie) THERMO-FBA-RG, für raumseitig geschlossenes Rollladenkastensystem

Wärmebrückenkatalog Beck+Heun Fensterbankanschlussprofil FBA				
Detail	Einbausituation	Produktbezeichnung		
Fensterbrüstung mit Fensterbankanschlussprofil	Außenwand monolithisch; Einbautiefe paasend für Roka-Lith-Neoline-RG	Fensterbankanschlussprofil FBA		

Legende Materialien					
Materialbezeichnung	λ : [W/(m*K)]	Schichtdicke mm			
Kalkgipsputz	0,7	15			
Ziegelmauerwerk	0,07 0,14	300 490			
Kalkzementleichtputz	0,38	20			
Kleber	0,55	5			
PVC	0,17	variiert			
EPDM	0,25	3			
Dämmung WLG 040	0,04	10			
Dämmung NEOPOR® WLG 032	0,032	300 490			

Gleichwertigkeit:

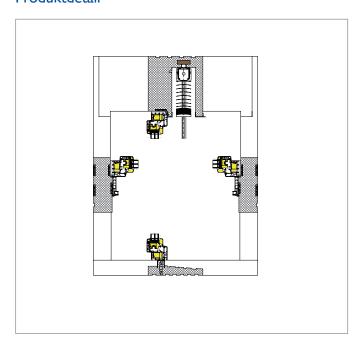
$$\begin{split} &\Psi_{\text{e,max}} : \text{ 0,01 [W/(m*K)]} \leq \text{ 0,07 [W/(m*K)]} \\ &(\text{Referenzwert It. Bild 42, Bbl. 2 DIN 4108}): \\ &\text{Gleichwertigkeit ist erfüllt} \end{split}$$

Längenbezogener Wärmedurchgangskoeffzient Ψ : [W/(m*K)]

		Wandstärke			
Värmeleitfähigkeit :: [W/(m*K)]	λ	30,0 cm	36,5 cm	42,5 cm	49,0 cm
	0,07	0,003	0,004	0,005	0,011
	0,09	0,001	0,002	0,002	0,009
	0,11	-0,002	-0,001	-0,001	0,008
γ × 3 γ : [0,14	-0,007	-0,004	-0,004	0,006

Hinweis: Die Werte gelten für Innensimse aus Holz/HWS d $\sim 30 \ \text{mm}$

BECK+HEUN ROKA-CO₂MPACT®


Das ausführungssichere Rundum-Dämmpaket für die perfekte Fenstermontage

- Einfach montiert und perfekt gedämmt
- Auf Wunsch mit integrierter dezentraler Lüftung System AIRFOX®

Produktdetail

Ausschreibungstext ROKA-CO₂MPACT® NEOLINE

Beck+Heun ROKA-CO2MPACT®-NEOLINE Komplettelement aus NEOPOR® (schwer entflammbar BI, λ = 0,032) für Putzmauerwerk und WDVS bestehend aus:

- Rollladenkasten RG (raumseitig geschlossen)
- Motorantrieb
- Rollladenpanzer nach Wahl
- Gedämmten Laibungselemementen mit zweiteiligem Aluminium-Führungsschienenensystem, Putzanschlussleiste und Abrollprofil
- Gedämmtem Fensterbankanschlusselement bzw. Estrichanschlusselement bei Türelementen

Oberfläche mit Grundbeschichtung für bessere Putzhaftung. Es können alle handelsüblichen Fenstersysteme integriert werden. Wärmeschutz: Umlaufend optimierte Wärmebrückendetails nach EnEV 2009 und DIN 4108, Beiblatt 2:2006-0003; Temperaturfaktor fRSI \geq 0,70; Usb \leq 0,85 [W/(m²*K)]

Alles in einem System

 $ROKA-CO_2MPACT^{\otimes}$ ist ein Komplettsystem für die Fenstermontage, das alle Anschlussstellen rund um das Fenster in einem Korpus aus $NEOPOR^{\otimes}$ vereint. Seine Leistungsfähigkeit in Bezug auf Wärmekennwerte, Wärmebrückendetails, Schallschutz und Schlagregendichtheit wurde seitens anerkannter Institute zertifiziert.

Die CO_2MPACT° -Elemente enthalten hochdämmende Thermo-Laibungen. Darin integriert sind zweiteilige Führungsschienensysteme, die vom Fenster thermisch entkoppelt und schlagregendicht sind. $ROKA-CO_2MPACT^{\circ}$ wird objektbezogen angefertigt und entweder mit einem raumseitig geschlossenen Rollladen- oder einem Raffstorekasten ausgestattet – beides inklusive Antriebstechnik und Behang. Außerdem ist ein reines Dämmelement erhältlich, sollte keine Beschattung gewünscht oder erforderlich sein.

Vorteile

- Einfach in Planung und Montage
- Umlaufend gedämmt und optimal aufeinander abgestimmt
- Bestmögliche Dämmwerte

- Optimaler Schallschutz
- Jedes Handelsübliche Fenster verwendbar

Passivhauszertifiziert

ROKA-CO₂MPACT® NEOLINE und ROCA-CO₂MPACT®-SHADOW sind passivhauszertifizierte Komponenten. Gerne berechnen wir Ihnen bauvorhabenbezogen und individuell die Wärmebrücken und Kennwerte Ihres Objektes. Bitte kontaktieren Sie uns.

Beck+Heun GmbH Niederlassung Süd

Industriestraße 2 D-86450 Altenmünster Telefon: +49 (0) 82 95 / 96 95-0 Telefax: +49 (0) 82 95 / 96 95-20 Internet: www.beck-heun.de E-Mail: altenmuenster@beck-heun.de

Beck+Heun GmbH

Reinhold-Beck-Straße 2 D-35794 Mengerskirchen Telefon: +49 (0) 64 76 / 91 32-0 Telefax: +49 (0) 64 76 / 91 32-30 Internet: www.beck-heun.de E-Mail: info@beck-heun.de

Beck+Heun GmbH Niederlassung Erfurt

Stottemheimer Straße 10 D-99086 Erfurt Telefon: +49 (0) 3 61 / 7 40 56-0 Telefax: +49 (0) 3 61 / 7 40 56-11 Internet: www.beck-heun.de E-Mail: info.erfurt@beck-heun.de